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We presented an application of the Lattice Boltzmann method (LBM) to study the dynamics of Min
proteins oscillations in Escherichia coli. The oscillations involve MinC, MinD and MinE proteins, which are
required for proper placement of the division septum in the middle of a bacterial cell. Here, the LBM is
applied to a set of the deterministic reaction diffusion equations which describes the dynamics of the Min
proteins. This determines the midcell division plane at the cellular level. We specifically use the LBM to
study the dynamic pole-to-pole oscillations of the Min proteins in two dimensions. We observed that Min
proteins' pattern formation depends on the cell's shape. The LBM numerical results are in good agreement
with previous findings, using other methods and agree qualitatively well with experimental results. Our
results indicate that the LBM can be an alternative computational tool for simulating the dynamics of
these Min protein systems and possibly for the study of complex biological systems which are described
by reaction–diffusion equations. Moreover, these findings suggest that LBM could also be useful for the
investigation of possible evolutionary connection between the cell's shape and cell division of E. coli. The
results show that the oscillatory pattern of Min protein is the most consistent with experimental results
when the dimension of the cell is 1 × 2. This suggests that as the cell's shape is close to being a square,
the oscillatory pattern no longer places the cell division of E. coli at the proper location. These findings
may have a significant implication on why, by natural selection, E. coli is maintained in a rod shape or
bacillus form.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Cell division is the process that a cell separates into two daughter
cells after the DNA has been duplicated and distributed into two re-
gions. For a successful cell division, the cell has to determine where
to separate in Escherichia coli and other rod-shape bacteria, two pro-
cesses are known to determine the division site: nucleoid occlusion
[1] and the oscillation of Min proteins [2].

Min proteins which are involved in determining the division site
are the MinC, MinD, and MinE proteins [2]. Experiments involving
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the use of modified proteins have shown that MinC is able to inhibit
the formation of the filamentous temperature sensitiveZ (FtsZ)-ring
[3]. It has been reported that tubules of FtsZ protein form cytoskele-
ton structure that is involved in septum formation [46]. The FtsZ
moves from the cytoplasm to inner membrane at the midcell loca-
tion just prior to cell division and assembles the Z-ring which then
relocates to the cytoplasm after division. MinD, on the other hand,
is an ATPase which is connected peripherally to the cytoplasmic
membrane. It can bind and activate MinC into function [4,5]. Recent
studies have demonstrated that MinD recruits MinC to the mem-
brane. This suggests that MinD stimulates MinC by concentrating
them near the presumed site of activation [6,7]. MinE is required to
give site specificity to division inhibitor, which suggests that MinE
acts as a topological specificity protein capable of recognizing the
midcell site and preventing the MinC division inhibitor from acting
at that site [8]. Its expression results in a site-specific suppression
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of the MinC/MinD action so that the FtsZ assembly is allowed in the
middle of the cell, but is inhibited at other sites [2]. In the absence of
MinE, the MinC/MinD is distributed homogeneously over the entire
membrane. These results in a complete blockage of the Z-ring forma-
tion and the subsequent formation of a long filamentous cell which
would fail to divide [6,7,9,10]. By a fluorescent labeling technique,
MinE was shown to attach to the cell wall only in the presence of
MinD [11,12]. Since MinD interacts with MinC, it is likely that they
oscillate together. This results in a concentration of the division in-
hibitor at the membrane on either cell end, alternating between be-
ing high or low every 20 seconds, so that the period of oscillation is
about 40 s [6,7]. MinE is not only required for the MinC/MinD oscil-
lation, it is also involved in setting the frequency of the oscillation
cycle [9]. Several pieces of evidence indicate that the MinE localiza-
tion cycle is tightly coupled with the oscillation cycle of MinD. Ex-
perimentally, microscopy of fluorescently labeled proteins involved
in the regulation of E. coli division is uncovered coherent and sta-
ble spatial and temporal oscillations of these three proteins [13].
The proteins oscillate from one end of the bacterium to the other
and move between the cytoplasmic membrane and the cytoplasm.
The detailed mechanism by which these proteins determine the
accurated position of the division plane is currently unknown, but
the observed pole-to-pole oscillations of the corresponding distribu-
tion are thought to be of functional importance.

A number of mathematical models of Min protein oscillation have
been proposed and studied [11,14–18]. These models are based on
macroscopic nonlinear reaction–diffusion equations (RDE) and are
solved using conventional finite difference schemes. Howard et al.
[14] proposed an RDE model in which the reaction consisted of pro-
tein's association to the membrane and its dissociation from the
membrane. This model incorporates the event that MinE is recruited
to the membrane by membrane-associated MinD. Later, Meinhardt
et al. [15] showed that the pattern formation of the Min system re-
quires the interaction of a self-enhancing component and its long-
ranging antagonists. They included the dynamics of FtsZ proteins in
their model. More recently, Kruse et al. [16] found that the pole-to-
pole oscillation depends on a tendency of cytoplasmic membrane
MinD to cluster and attachment to and detachment from the cell
wall. However, the Kruse model requires unrealistically rapid mem-
brane diffusion ofMinD. Sincemostmodelsmentioned above applied
only to uniformly rod-shaped wild-type cells, Huang and Wingreen
[18] proposed the model to reproduce the experimental oscillations
in not only rod-shaped cells, but also round and ellipsoidal cells. All
of these models successfully generated the oscillation patterns and
are in agreement with the experimental observations. Huang et al.
[11] formulated the model in three dimensions based on an experi-
ment to describe Min proteins oscillation. All these models only deal
with the macroscopic behavior, modeled by the RDE and do not pro-
vide microscopic details. This present work focused on the reaction
of MinD and MinE and presented an alternative method, called the
Lattice Boltzmann method (LBM) [19], for determining the position
of cell division of E. coli which depended on the mechanism of Min
system in the microscopic level.

The LBM scheme has been particularly successful in simulat-
ing fluid flow and useful for a broad variety of complex physical
systems, finding applications in different areas, such as in hydro-
dynamic systems [19,20], magneto-hydrodynamics [21–24], multi-
phase and multi-component fluids [25], advection–diffusion [26],
reaction–diffusion [27–30] and blood flow [31–33]. Most research
reported in the literature is limited to the applications of LBM to the
Navier–Stokes equations [34,35]. Its application to complex biologi-
cal systems at the cellular and the molecular biological levels is rare.

In this work, we propose the use of LBM to study the partition-
ing of a bacterial cell during cell division and compare our two-
dimensional results with experimental observations.

2. Reaction–diffusion models for Min protein oscillation

We consider RDE model consisting of a set of four partial differ-
ential equations in order to study the Min protein oscillation. This
is a version that is one dimensional in the space variable, given by
Howard et al. [14]. Though the model is straightforward and rela-
tively simple, it gives the correct placement of the division septum
in E. coli. The mechanism is governed by the time rates of change
of the protein densities due to the diffusions of MinD and MinE and
to the mass transfer between the cell membrane and the cytoplasm
as schematically shown in Fig. 1. Based on experimental results [7],
showing that the MinC dynamics are similar to those of MinD, we
shall leave out the equations for the MinC proteins. In dimensionless
form, the dynamics may be given by the following equations:

��D

�t
− DD∇2�D = RD = − �1�D

1 + �′
1�e

+ �2�e�d, (1)

��d

�t
− Dd∇2�d = Rd = �1�D

1 + �′
1�e

− �2�e�d, (2)

��E

�t
− DE∇2�E = RE = �4�e

1 + �′
4�D

− �3�D�E, (3)

��e

�t
− De∇2�e = Re = − �4�e

1 + �′
4�D

+ �3�D�E, (4)

where ∇2 is the Laplacian operator. We let s={D, d, E, e} represent the
cytoplasmic MinD, the cytoplasmic membrane MinD, the cytoplasm
MinE, and the cytoplasmic membrane MinE, respectively. Here, �s is
the mass density of particles of species s at time t and position (x, y).
Rs is a reaction term which depends on the density of the species
(�s) and on the density of the other species that react with species s.
Ds is the diffusion coefficient, �1 is the parameter connected to the
spontaneous association of MinD to the cytoplasmic membrane, �′

1
is that which is connected to suppression of MinD recruitment from
the cytoplasm by the membrane-bound MinE, and the �2 reflects the
rate that MinE on the membrane drives the MinD on the membrane
into the cytoplasm. We let �3 be the rate that cytoplasmic MinD
recruits cytoplasmic MinE to the membrane, while �4 describes the
rate of dissociation of MinE from the membrane to the cytoplasm.
Finally, �′

4 reflects the cytoplasmicMinD suppression of the release of
the membrane-bound MinE. The diffusion on the membrane occurs
at a much smaller time scale than that in the cytoplasm. It seems,
therefore, reasonable to set Dd and De as zero. In this dynamics, we
allow the Min protein to bind to/unbind from the membrane, but not

Fig. 1. Schematic diagram of the MinDE dynamics. This model of the mechanisms of
MinD and MinE interaction was proposed by Howard et al. [14]. This figure shows
the rate reaction of Min proteins in the cytoplasm and cytoplasmic membrane.



414 S. Sriyab et al. / Computers in Biology and Medicine 39 (2009) 412–424

for it to be degraded in the process. Thus, the total amount for each
type of Min protein is conserved. The zero-flux boundary condition
will be imposed. This boundary condition needs a closed systemwith
reflecting or hard-wall boundary conditions. The total concentration
of Min proteins is conserved.

Before turning to numerical description of this model, we first
analytically work out the linear stability of the model system in one
spatial dimension as the following.

2.1. Stability analysis

To determine whether the steady state is stable against small
spatial perturbations, linear stability analysis is performed. For sim-
plicity, we write our set of Eqs. (1)–(4) in one-dimensional spatial
form

���
�t

= D
�2 ��
�x2

+ �f (��), (5)

where �� is the Min proteins density vector, D is a diffusion matrix,
and �f (��) is a nonlinear function of ��. Suppose ��∗ is a homogeneous
fixed point of Eq. (5), then we define

�� ≡ ��� + ��∗, (6)

where ��� is a small variation from the fixed point. Substituting (6)
in (5), we obtain

����
�t

= D
�2

���
�x2

+ �f (��∗ + ���). (7)

Then we take a multivariate Taylor expansion of �f (��∗ + ���) around
the homogeneous fixed point ��∗

�f (��∗ + ���) = �f (��∗) + ��f
���

∣∣∣∣∣��∗
��� + . . .

= ��f
���

∣∣∣∣∣��∗
��� + . . .

= J∗��� + . . . , (8)

where J∗ is the Jacobian matrix evaluated at the fixed point ��∗ and
the Jacobian matrix is defined as

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�f1
��1

�f1
��2

· · · �f1
��n

�f2
��1

�f2
��2

· · · �f2
��n

...
...

...

�fn
��1

�fn
��2

· · · �fn
��n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For a small variation from the fixed point, only the first term in
Eq. (8) is significant. If we want to know how trajectories behave
near the equilibrium point, e.g. whether they move toward or away
from the equilibrium point, it should therefore be good enough to
keep just this term. Then we have

�f (��∗ + ���) = J∗���. (9)

Substituting (9) in (7), we obtain

����
�t

= D
�2

���
�x2

+ J∗���. (10)

Since the matrix J∗ is a constant matrix, this is just a set of linear
differential equations. Now, suppose the solution has the form

��� = ���0e
�teiqx. (11)

Substituting (11) in (10), we have

���� = −Dq2��� + J∗���.

So, � is just the eigenvalues of the equation

(−Dq2 + J∗)��� = ����. (12)

The real part of � will determine whether the equations are linearly
stable under a small spatial perturbation, whereas its imaginary part
will determine the period of the oscillation

T = 2�
|Im(�)| . (13)

If we know that there exists only one eigenvalue � whose real part
is positive, then we can conclude that this homogeneous fixed point
is linearly unstable under a small spatial perturbation. We use an
iterative method to find the homogeneous fixed point of our set of
Eqs. (1)–(4).We carried out the iterations several timeswith different
starting points, using parameter values given by Howard et al. [14],
finding only one fixed point, namely �D=747.06, �E=0.00, �d=2.94,
�e = 750.00. With this fixed point together with Eq. (12), we are
able to find the eigenvalues � and determine if, for a certain set of
parameter values, the fixed point is linearly stable. Now, we turn to
application of LBM and numerical results.

3. The Lattice Boltzmann Method

The LBM is a numerical scheme evolved from the Lattice gas
model (LGM) in order to overcome the difficulties encountered with
that model [19,36]. The LGM or lattice gas automata is a method
to determine the kinetics of particles by utilizing a discrete lattice
and discrete time. It has provided insights into the underlying mi-
croscopic dynamics of the physical system whereas most other ap-
proaches focus only on the solution to the macroscopic equation.
However, the LGM, in which the particles obey an exclusion prin-
ciple, has microscopic collision rules. These rules are very compli-
cated and require many random numbers. These random numbers
create noise or fluctuations. An ensemble averaging is then required
to smooth out the noise in order to obtain the macroscopic dynam-
ics which are the results of the collective behavior of the many mi-
croscopic particles in the system and which are not sensitive to the
underlying details at the microscopic level. The ensemble averag-
ing consumes computer resources, which leads to an increase in the
amount of computational storage required and which in turn leads
to a reduction in the computational speed. For these reasons, the
LBM is used only when one is interested in the evolution of aver-
aged quantities and not in the influence of the fluctuations. The LBM
gives a correct average description on the macroscopic level of a
fluid. Though LBM is based on particle dynamics, its central focus
is the averaged macroscopic behavior, leaving out the fluctuation.
It is relatively easy to implement the more complex boundary con-
dition such as the curved boundary [37] when compared with the
conventional grid-based numerical integration. In addition, for the
model whose dynamics is very complex, use of parallel computing
[19] in combination with LBM algorithm would be greatly beneficial
in terms of simulating time in a straight forward manner.

The LBM can also be viewed as a special finite difference
scheme for the kinetic equation of the discrete-velocity distribution
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function. While the traditional computational methods in fluid dy-
namics, such as finite element method, finite difference method and
finite volume method, solve macroscopic fluid dynamics equations,
LBM solves a problem at a microscopic level in order to recover a
particle density and velocity from the macroscopic properties [38].
The simplicity and the kinetic nature of the LBM are among its ap-
pealing features. The LBM consists of simple arithmetic calculations
and is, therefore, easy to program. In the LBM, the space is divided
into a regular Cartesian lattice grid as a consequence of the sym-
metry of the discrete-velocity set. Each lattice point has an assigned
set of velocity vectors with specified magnitudes and directions con-
necting the lattice point to its neighboring lattice points. The total
velocity and particle density are defined by specifying the number
of particles associated with each of the velocity vectors. The mi-
croscopic particle distribution function, which is the only unknown,
evolves at each time step through a two-step procedure: convection
and collision. The first step, convection (or streaming), simply ad-
vances the particles from one lattice site to another lattice site along
the directions of motion according to their velocities. This feature is
borrowed from the kinetic theory. The second step, or collision, is
to imitate various interactions among particles by allowing for the
relaxation of a distribution do toward an equilibrium distribution
through a linear relaxation parameter. The averaging process uses
information based on the whole velocity phase space.

The lattice Boltzmann equation can be viewed as a discrete form
of the Boltzmann equation. LBM can be derived directly from the sim-
plified Boltzmann Bhatnagar–Gross–Krook (BGK) equation [39,40].
The discrete form of the lattice Boltzmann equation is

f�(�r + �t�c�, t + �t) = f�(�r, t) + ��(�r, t), (14)

where f� is the distribution function at space �r and time t. With
the discrete velocity �c�, the particle distribution travels to the next
lattice node in one time step �t. The collision operator �� differs
according to the model details. In the lattice BGK (LBGK) that we
use, the particle distribution after propagation is relaxed toward the
equilibrium distribution f eqi (�r, t) according to

��(�r, t) = −1
	
(f�(�r, t) − f eq� (�r, t)). (15)

The relaxation parameter 	 determines the kinematic viscosity 

of the simulated flow according to


 = (2	 − 1)/6.

LBM, as the name suggests, works on the given lattice depending
on the field of applications. Traditionally, the interested systems are
named DXQY, where X is the number of dimensions and Y deter-
mines the number of distinct lattice velocities.

The equilibrium distribution function f eq is defined to be the same
for one, two, and three dimensions as

f eq� = ���

(
1 + 3c� · �u

c2
+ 9(c� · �u)2

2c4
− 3u2

2c2

)
, (16)

where the weight constant and the lattice velocities for D1Q3 are

�� =
{
2/3, � = 0

1/6, � = 1, 2
, (17)

c� =
{
0, � = 0

cos(� − 1), � = 1, 2
(18)

while the weight constant and the lattice velocities for D2Q9 are

�� =

⎧⎪⎨
⎪⎩
4/9 � = 0

1/9, � = 1, 2, 3, 4

1/36, � = 5, 6, 7, 8

, (19)

c� =

⎧⎪⎨
⎪⎩
(0, 0), � = 0

c(cos��, sin��), �� = (� − 1)�/2, � = 1, 2, 3, 4
√
2c(cos��, sin��), �� = (� − 5)�/2 + �/4, � = 1, 2

, (20)

and the weight constant and lattice velocities for D3Q27 are

�� =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

8/27, � = 0

2/27, � = 1, 2, . . . , 6

1/54, � = 7, 8, . . . , 18

1/216, � = 19, 20, . . . , 26

, (21)

c� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, 0, 0), � = 0

c(±1, 0, 0), c(0,±1, 0),

c(0, 0 ± 1), � = 1, 2, . . . , 6

c(±1,±1, 0), c(±1, 0,±1),

c(0,±1,±1), � = 7, 8, . . . , 18

c(±1,±1,±1), � = 19, 20, . . . , 26

. (22)

The density � and flow velocity u can be calculated from

� =
∑
�

f�, (23)

�u =
∑
�

c�f�. (24)

For simplicity, the size of a cell and the length of time step will be
normalized to 1, which leads to c=1, and will not be included in the
formulas. We summarize LBM as

f�(�r + �c�, t + 1) − f�(�r, t) = −1
	
(f� − f eq� ). (25)

Due to the fact that the Navier–Stokes equations are the continuum
limit of the lattice Boltzmann, they can be derived by a procedure
called Chapman–Enskog expansion, or multiscale analysis. To do so
we must first Taylor expand LBM Eq. (25). We then have

f�(�r + �c�, t + 1) − f�(�r, t)

≈
(

�
�t

+ �c� · ∇
)
f�(�r, t) + 1

2

(
�
�t

+ �c� · ∇
)2

f�(�r, t) + O(�2)

= −1
	
(f� − f eq� ). (26)

Expanding the distribution function and the time and space deriva-
tives in term of the Knudsen number �, one obtains

f� = f (0)� + �f (1)� + �2f (2)� + O(�3), (27)

�
�t

= �
�

�t1
+ �2

�
�t2

, (28)

∇ = �∇1, (29)

where f (0) = f eq. The above formula assumes that the diffusion time
scale t2 is much smaller than convection time scale t1. Eqs. (27)–(29)
satisfy the constraints∑

�
f (0)� = �, (30)

∑
�

e�f
(0)
� = �u, (31)
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when∑
�

f (k)� = 0, (32)

∑
�

e�f
(k)
� = 0. (33)

For k>0. Substituting Eqs. (27)–(29) into Eq. (26), we have(
�

�
�t1

+ �2
�

�t2
+ ��c� · ∇1

)
(f (0)� + �f (1)� + �2f (2)� )

+
(
�

�
�t1

+ �2
�

�t2
+ ��c� · ∇1

)2

(f (0)� + �f (1)� + �2f (2)� )

= −1
	
(�f (1)� + �2f (2)� ). (34)

We obtain the following equation from terms of order �:(
�

�t1
+ �c� · ∇1

)
f (0)� = −1

	
f (1)� , (35)

and terms of order �2 yield

�f (0)�

�t2
+
(

�
�t1

+ �c� · ∇1

)
f (1)� + 1

2

(
�

�t1
+ �c� · ∇1

)2

f (0)�

= −1
	
f (2)� . (36)

By using Eq. (35), we can write Eq. (36) as

�f (0)�

�t2
+
(
1 − 1

2	

)( �
�t1

+ �c� · ∇1

)
f (1)� = −1

	
f (2)� . (37)

Combining (35) with (37), we are led to

�
�t1

∑
�

f (0)� + ∇1 ·
∑
�

c�f
(0)
� = O(�). (38)

Continuity is assumed by

��
�t

+ ∇ · ��u = 0. (39)

Using (38) in (39), we have

�
�t1

∑
�

c�f
(0)
� + ∇1 ·

∑
�

c�c�f
(0)
� + �

(
1 − 1

2	

)
∇1

×
∑
�

c�c�f
(1)
� = O(�). (40)

The quantity∑
�

c�c�f
(0)
� = pI + ��u�u (41)

is the stress tensor, where I is the identity tensor. Using Eq. (35) for
the term �(1− 1/2	)∇1 ·∑�c�c�f

(1)
� in (40) and rearranging, we have

− �
(
1 − 1

2	

)
∇1 ·

∑
�

c�c�

(
�f (0)�

�t1
+ ∇1 · �c�f (0)�

)

= −
(∇���u + ∇��u�). (42)

Lastly, substituting Eqs. (41) and (42) into Eq. (40), we obtain the
Navier–Stokes equation

���u
�t

+ ∇ · ��u�u = −∇p + 
∇�(∇���u + ∇��u�). (43)

The pressure can be calculated from p = �c2s with speed of sound
cs =

√
RT. The above derivation illustrates how to relate mesoscopic

and macroscopic levels of dynamics.
Next, to connect the lattice Boltzmann equation with a reacting

system like what we are interested in as shown in Eqs. (1)–(4), we
employ a procedure called the Chapmann–Enskog expansion [8]. We
then expand the distribution function about the equilibrium as

f s� = f s,(0)� + �f s,(1)� . (44)

We now assume that

�
�t

= �2
�

�t2
, (45)

∇ = �∇1, (46)

�s
� = �2�s,(2)

� . (47)

Substituting Eqs. (44)–(47) into Eq. (30), we obtain

�c� · ∇1f
s,(0)
� = − 1

	s
f s,(1)� (48)

to order �1 and

�f s,(0)�

�t2
+ �c� · ∇1f

s,(1)
� + 1

2
c�c� : ∇1∇1f

s,(0)
� = �s

�Rs (49)

to order �2. From Eq. (51), we immediately obtain

f s,(1)� = −	s�c� · ∇1f
s,(0)
� . (50)

Inserting Eq. (52) into (51), we have

�f s,(0)�

�t2
+
(
	s − 1

2

)
c�c� : ∇1∇1f

s,(0)
� = �s

�Rs. (51)

Summing Eq. (53) over �, with weights �s
�, we obtain

��s

�t
− 1

3

(
	s − 1

2

)
∇2�s = Rs, (52)

which is the dimensionless version of the initial RDE, in which the
relation between the diffusion coefficient and relaxation time is

Ds = 1
3 (	s − 1

2 ). (53)

We consider the two-dimensional LBM (D2Q9) for the RDE in
the referenced model. Let f s�(�r, t) be the one particle distribution
function of species s with velocity �c� at some dimensionless time t
and dimensionless space �r.s = {1, 2, 3, 4} represent the cytoplasmic
MinD, membrane-bound MinD, cytoplasmic MinE and membrane-
bound MinE, respectively. The Lattice Boltzmann equation for f s�(�r, t)
can be written as

f s�(�r + �t�c�, t + �t) = f s�(�r, t) + �s
�(�r, t), (54)

where �s
� is the collision operator for species s and depends on the

distribution function f s� . The collision operator �s
� can be separated

into two parts [27]. The first term is the elastic collision function,
which is taken to be of BGK approximation with a single relaxation
time 	s. The second term is reactive collision term, i.e.,

�s
�(�r, t) = −1

	
(f s�(�r, t) − f (eq,s)� (�r, t)) + �s

�, (55)

where f (eq,s)� is the equilibrium distribution. Here, we use the simple
equilibrium distribution function corresponding to a system with
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zero mean flow

f (eq,s)� = �s
��s, (56)

where �s
� is the weight function which depends on the lattice sym-

metry [21].
The density of particle species s is denoted by �s. For the reactive

term �s, we use the simple isotropic form

�s = �s
�Rs. (57)

The term Rs is the non-linear reaction term and depends on the
density of reacting species.

4. LBM numerical implementation

The LBM models flow of particles as an incompressible fluid
where particles can move only in the direction of the lattice veloc-
ity vectors c� in a cell. For the simulation, every cell must store the
changes in particles that move in the direction of each possible lat-
tice vector c�, with particle distribution functions f�, where the val-
ues for � are the numbers of the lattice vectors in the cell. The vector
c0 denotes a particle at rest which has zero length.

From the particle distribution functions, two important physical
quantities can be calculated. By summing up all distribution func-
tions, we get the density �. Another important quantity needed
for each cell is the speed and overall direction in which the par-
ticle of one cell moves. For this, the momentum density needs to

Fig. 2. Particle distribution function in the collision step at time t and the streaming
step at time t + 1 in D2Q9.

Fig. 3. Sketch of bounce-back scheme.

be calculated. It is again the sum of all particle distribution functions,
but each distribution function is multiplied first by the lattice vector
c�. The simulation process consists of two steps that are repeated in
each time step. To summarize, wewill now implement the numerical
evaluation governed two equations

Collision: f s,∗� (�r, t) = f s�(�r, t) − 1
	
(f s�(�r, t) − f (eq,s)� (�r, t)) + �s

�Rs.

Streaming: f s�(�r + �c�, t) = f s,∗� (�r, t).

The first step is the collision step which accounts for the collision
changes due to the movement of particles. The second step is the
streaming step, in which the actual movement of the particles takes
place throughout the grid. The collision step only changes the dis-
tribution of the particles for all particle distribution functions. The
most time consuming step is the calculation of f (eq)� for which we
need to calculate the density � and velocity �u first. The streaming
step consists only of copying the distribution function f� from posi-
tion r to the neighboring r + c�, as shown in Fig. 2. For each cell, all
distribution functions are copied to the adjacent cell in the direction
of the lattice vector c�. Hence, for the cell with the coordinates [i, j]
the distribution function for the lattice vector pointing upwards is
copied to the upward distribution function of cell [i, j + 1]. As the
lattice vector c0 does not point anywhere, its particle distribution
function is not changed in the streaming step. The only trick is, when
writing a program that performs the streaming, for each direction
c�, there should be a do loop to copy the distribution function f� in
the opposite direction to that of c�. This is necessary to prevent any
overwriting of distribution functions that are needed for the stream-
ing of another cell.

The boundary treatment is an important issue in the LBM simu-
lations and research advancements are still being made [41,42]. The
simplest boundary condition for LBM simulations is the bounce-back
scheme, i.e., close to the boundary the fluid does not move at all.
Hence, each Lattice Boltzmann cell next to a boundary should have
the same amount of particles moving into the boundary as moving
into the opposite direction. This will result in a zero velocity, and can
be imagined as reflecting the particle distribution functions at the
boundary. The reflection process is shown in Fig. 3, for which only
the velocities normal to the boundary are reflected. For the imple-
mentation this means that boundary and fluid cells need to be distin-
guished. A flag array has to be introduced and initialized to declare
all boundary cells as “wall” and all inner cells as “fluid”. Here the flag
array had to be checked, and if the neighboring cell is a boundary
cell the opposite distribution function from the current cell would
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Fig. 4. Schematic illustration of the mirror-image method for the boundary treatment.

Fig. 5. The oscillation of MinD protein performed in LBM and experiment. (A) The LBM simulation results of MinD showing pole-to-pole oscillation in term of time evolution
of total concentration of MinD as a function of position (x, y) (in �m). The color scale runs from the lowest (black) to the highest (white). (B) The experimental results
showing the oscillation of GFP:MinD concentration. The characteristics of dynamical pattern are similar features of A and B with MinD mostly concentrated at the polar
zone (see experimental details in Ref. [47]).

be taken. The bounce-back scheme is widely used in the treatment
of the hard-wall boundary condition. However, we found that the
boundary condition is not accurate for the diffusion system. To deal

with this, we use the mirror-image method suggested by Zhang
et al. [43]. As shown in Fig. 4, if the node B is a boundary node, it will
see their image in node I. The distribution functions are also defined
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Fig. 6. The oscillation of MinE protein performed in LBM and experiment. (A) The LBM simulation results of MinE showing pole-to-pole oscillation in terms of time evolution
of total concentration of MinE as a function of position (x, y) (in �m). The color scale runs from the lowest (black) to the highest (white). (B) The experimental results
showing the oscillation of GFP:MinE concentration. The characteristics of dynamical pattern are similar features of A and B while MinE seems to occupy regions near the
midcell (see experimental details in Ref. [44]).

at the image node, which serves as the missing distribution function
to the real node. The exact form of the distribution functions at the
image cell depends on the specific boundary. Here, we use the im-
permeable boundary which is appropriate for the reaction–diffusion.
When the boundary is impermeable, the distribution functions at
the imaginary node take the mirrored distribution functions at their
real corresponding node. For the example shown in Fig. 4, the pro-
collision and pre-streaming distribution functions at the imaginary
node I are

f1(I, t) = f3(B, t),

f5(I, t) = f6(B, t),

f8(I, t) = f7(B, t).

This boundary condition is suitable for low speed such as diffusion
system, while the bounce-back boundary condition is suitable for
high speed flows such as in hydrodynamic systems.

We implemented the LBM, given in Section 3, on a PC using
C programming to simulate the two-dimensional model. In the

simulation, we use the same parameters as those given by Howard
et al. [14], namely

DD = 0.28�m2/s, DE = 0.6�m2/s, Dd = De = 0�m2/s,

�1 = 20 s−1, �′
1 = 0.028�m,

�1 = 0.0063�m/s, �2 = 0.04�m/s,

�4 = 0.8 s−1, �′
4 = 0.8�m.

However, the LBM algorithm needs all parameters to be dimension-
less. We therefore transform the original parameters by letting

n = �/�0, D̃D = DD�t/�r2, D̃E = DE�t/�r2, �̃1 = �1�t,

�̃′
1 = �′

1�0, �̃2 = �2�0�t,

�̃3 = �3�0�t, �̃4 = �4�t, �̃′
4 = �′

4�0,

where �t, �r and �0 are, respectively, the time step, grid spacing,
and the unit of concentration. Here, we set �0=1/�m. The relaxation
time 	s is calculated by Eq. (53). The initial numbers of MinD and
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MinE are randomly initialized as 3000 for �D, 170 for �E and 0 for �d
and �e. Each simulation goes through iterations for 10,000 seconds
of time steps. To eliminate transient behavior we throw away the
first 10 s into the iterations. We allow the proteins to diffuse in the
directions of x- and y-axes and assume that the diffusion is isotropic.
For the case of a two-dimensional cell division, we used 50×100 grids
to simulate the bacterium (unless otherwise stated), being 1× 2�m
in size. The LMB scheme is D2Q9. We choose discrete space steps
�x=�y=2×10−2 �m and time step �t=4×10−4 s. We set �0=1/�m2

as the concentration unit.

5. Results and discussion

In two dimensions, we plot the time evolution for the concen-
tration of oscillating MinD as shown in Fig. 5, and that of MinE
as shown in Fig. 6. The concentrations of Min proteins are homo-
geneous in the y-axis. The two proteins predominantly oscillate in
the x-axis. We compared our computational results, Figs. 5(A) and
6(A), with the experimental results of Unai et al. [47] and Junthorn
et al. [44] and found they are in qualitative agreement. It is evident
from both numerical and experimental data that MinDs appear near
the polar zone as its intensity grows. After that, the intensity de-
creases, leading to an increase at the opposite pole. It should be em-
phasized that MinD localizes at the polar zone for relatively longer
time and suddenly switches to the opposite pole. Therefore, high

Fig. 7. The time average of MinD and MinE by LBM and experiment. (A) The time average MinD (left) and MinE (right) densities 〈n(x, y)〉/nmax in LBM simulation, relative

to their respective time-average maxima, as a function of two-dimensional position
�

x =(x, y) (in �m) along the bacterium. The bacterial shape is 1 × 2�m. (B) The time
average of intensity for MinD (left) and MinE (right) in experiments (see Ref. [44] and [47]). The colors are scaled from 0 to 1. The main characteristics of high and low
normalization are similar between A and B.

concentrations of MinD are mostly found in the polar region. As for
the distribution pattern of MinE, the formation is very consistent
with experimental data reported in [45], namely it collectively dif-
fuses from the vicinity of midcell to the left edge around the polar
zone and immediately returns to the midcell area. Fig. 7 shows time
averages of MinD and MinE concentrations. The average concentra-
tion of MinD is minimum while that of MinE is maximum at midcell.
These patterns once again agree well with the experimental results.

Next, we study the models via LBM to investigate the relation-
ship between a bacterial shape and the distribution patterns of Min
proteins. The goal is to understand whether Min proteins dynamics
is related to or determine the shape of E. coli, and if so how it is. The
numerical data might be able to explain why E. coli is rod shaped.
Hence, we simulated the Min protein oscillation for bacterial cells
of several shapes, gradually deviating from an elongated shape and
becoming closer to being a square, as shown in Figs. 8–10. Com-
pared to the pattern seen in Fig. 7, the dynamic patterns shown in
Figs. 8 and 9, with cell dimensions 2×3 and 3×4, respectively, appear
to indicate that the intensity of MinD is maximum away from the
poles, while that of MinE is maximum away from the midcell area.
When the shape of the cell becomes square, both Min proteins seem
to diffuse all over the cell and are not confined to the poles or the
midcell (see also Figs. 11–12). In Figs. 8,9, it is clearly seen that the
time-average concentrations of MinD (MinE) are no longer predicted
by the model to be lowest (highest) at the center of the length of
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Fig. 8. The profiles of time averages MinD (left) and MinE (right) densities relative to their maxima, n(x, y)/nmax. The bacterial shape is 2 × 3�m.

Fig. 9. The profiles of time averages MinD (left) and MinE (right) densities relative to their maxima, n(x, y)/nmax. The bacterial shape is 3 × 4�m.

Fig. 10. The profiles of time averages MinD (left) and MinE (right) densities relative to their maxima, n(x, y)/nmax. The bacterial shape is 2 × 2�m.

the cell. Moreover, MinD and MinE in a square-shaped cell perform
repeated lateral movements suggesting that these Min proteins do
not assemble at the poles or ends of the axis (there being no obvious
axis of the cell length) but can, in fact, assemble anywhere in the cell.
This result suggests that protein oscillation governing cell division

should not occur when an E. coli cell is square. Compared to those
results by Huang and Wingreen [18], they also suggested that the
Min protein comprises a general cell geometry detection mechanism
that can dynamically reorganize division site placement in response
to changes in cell shape.
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Fig. 11. The time series snapshots of dynamical patterns of MinD and MinE in 2× 2 square shaped of bacteria. The dynamical patterns of MinD are seen in columns 1 and
3, while those of MinE are seen in columns 2 and 4. We monitored times range from 40 to 110 s.

Finally, we would like to mention that indeed E. coli are able to
grow and divide as spheres and still generate two daughter cells of
similar size. There are evidences from the recent study indicating
that the Min system exerts spatial control of division site positioning
in round cell (cocci) of E. coli [18,48]. Due to the fact that before the
cell is divided, the Min system has to find the long axis. Hence the
Min system in rod-shaped E. coli can find the obvious long axis so
that the cell can divide into two daughter cells. For division in round
cell, even there is no obvious long axis, cocci is still able to accurately

divide along equatorial or alternating perpendicular planes into two
daughter cells instead. In this process, the Min proteins oscillate to
regulate a usual function of blocking polar division at the poles of the
round cell. This consequently would allow the dividing plane around
the equator to be consistently defined [49,50]. In square cell (as an
approximate system of the real round cell) considered in our model,
as a consequence of the dynamics used, the density ofMinD andMinE
in terms of time average cannot find the long axis (or dividing plane
counterpart) so that MinD could not find the polar zones as well as



S. Sriyab et al. / Computers in Biology and Medicine 39 (2009) 412–424 423

Fig. 12. Contour plots for MinD (left) and MinE (right) corresponding to the patterns given in Fig. 11.

MinE could not specify the midcell zone (Figs. 10 and 12). This could
accordingly lead to malfunction in cell division. With this regards,
one may consider the present model as a bit over-simplified model
or the limitation of this LBMmodel in our case. As pointed out previ-
ously, the LBM is based on particle dynamics (mesoscale), its central
contribution is thus the averaged macroscopic behavior leaving out
the fluctuation. Hence one could (at least in principle) improve the
model in two directions: complicating model by accounting more
detailed mechanism especially using the experimental evidences or
using microscopic scale model with fluctuation.

6. Concluding remarks and future works

Understanding of bacteria cell division is central for an
understanding of microorganism as well as the origin of the life.
This research has utilized the two-dimensional LBM to investigate
the dynamic pole-to-pole oscillations of Min proteins, a mechanism
used to determine the middle of a bacterial cell for division. We have
developed a numerical scheme based on the LBM to simulate the
coarse-grained coupled RDE model used to describe the MinD/MinE
interaction in two dimensions. Good agreement between the exper-
imental and numerical results is found, such as the time evolution
of the MinD and MinE with the DIC monograph as observed in
experiments. In addition, we have also investigated the possible
evolutionary connection between cell shapes and cell division of
E. coli. Interestingly, the limitation of LBMmodel and why our model
fails to predict the cell division in the round cell have also been
discussed.

The LBM approach provides a fast computational tool to study
the deterministic models of protein oscillation. This finding suggests
that the LBM is a useful scheme for simulating biological systems at
the cellular level, especially those which are governed by the RDE.
In a future work, we will generalize the current LBM so that it can
be used to study the effects of in-homogeneity in the intracellular
space and the possibility of an asymmetrical cell division. Since the
LBM is a method based on kinetic theory, it should be a suitable
alternative for studying the effects of various factors on cell division
of a bacterium. Lastly with the main advantage of the LBM in which
the particle interpretation allows the use of very simple boundary
conditions so that the parallel implementation may be used even
for very complex cell geometry. However, LBM neglect atomistic
interaction and fluctuation effect.
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